
Risk 1

Group 2 - Vikingz

Damian Boruch

Tommy Burholt

Elliott Bryce

James Butterfield

Ren Herring

Zhenggao Zhang

Sharlotte Koren



Risk Management Process
Our risk management process involved 4 steps: risk identification, risk analysis, risk planning
and risk monitoring.

The first step was to identify relevant risks that we might encounter during the project. In this
phase it was important to eliminate any risks with negligible consequences or very low
probability of occurrence. To help us identify risks, we used our past experiences working in
team projects, both within the university and elsewhere. We also read through section 22.1
in Software Engineering [1] to get expert advice on risk management processes. To start we
simply brainstormed some ideas, but then we began to categorise the risks into product
related risks and human related risks.

We then began our risk analysis where we assigned each identified risk a severity and
likelihood rating. Two team members were involved in this process and they each
individually gave a ranking and the average score was taken.

After the analysis we had a good understanding of the known risks we might encounter
during our project. We then had to plan avoidance and mitigation strategies. To help avoid
risks, we made sure to not have any critical dependencies with a low bus factor. Some
mitigation strategies we employed were:

- Bi-weekly meetings to promote a close working environment
- Created documents for internal todo lists to keep everyone up-to-date on current

tasks
- Cloud sharing to reduce risk of important documents being lost.

As a group we also created contingency plans, such as using 3rd party sound and graphic
assets if we run out of time or fail to make our own during the project timeline.

The final step of our risk management process is risk monitoring. This is an ongoing step
throughout the project. We made sure that all team members were re-assessing risks related
to their parts of the projects. It is the responsibility of the owner of a risk to make sure that
the likelihood and severity of the risk is kept up to date.

Explanation of risk register columns

- ID: a unique risk ID so that the risk can be referenced easily elsewhere in the project
- Type: Human or Product. Human risks relate to issues with members of the team.

Product risks relate to hardware, software or documentation issues.
- Description: a short description of what the risk is.
- Likelihood: Low, Med or High. The probability of a risk occurring.
- Severity: Low, Med or High. How damaging a risk would be if it occurs.
- Impact: an explanation of the impact this risk would have if it occurs.
- Mitigation: our planned strategy to avoid this risk and what to do if it occurs.
- Owner: the team member(s) responsible with tracking and updating this risk.



Risk Register

ID Type Description Likelihood Severity Impact Mitigation Owner

R1 Human Sound
designer
becomes
unavailable

Low Med Our plan is to
design in-house
sound for the game.
If the sound
designer becomes
unavailable, this
would leave the
project without
sound which would
fail the UR_SOUND
requirement.

As a contingency we
researched 3rd party
sound packs, so that we
could implement them
quickly if needed.

Tommy

R2 Product Estimated
time taken to
complete
deliverables
is
underestimat
ed

Med High This could lead to
us not handing in
our project on time
and missing the
deadline. This
would cause us to
lose marks and
potentially fail.

We made an internal
deadline of one week
before the official
deadline for all tasks
(apart from testing code
and updating the
website) so that we were
aware of any delay well
before the due date.

Elliott

R3 Human Member(s) of
the team
become ill or
unavailable
during project

Low Med Losing a member of
the team would
increase workload
on all other
members and would
require a rework of
responsibilities.

We decided that if only
1-2 members became
unavailable we would be
able to cope with the
extra workload. If more
members become ill we
will ask for consideration
from the teaching staff.

Zhengg
ao

R4 Product Faults in 3rd
party
code/graphic
extensions

Med Low This could cause
bugs in our code
that we don’t have
the capabilities to
fix, reducing our
project quality.

Due to LibGDX being a
popular framework there
are many options of
packages we can use. If
we find detrimental faults
in a package, we will
research and switch a
separate package.

Damian

R5 Human Conflict
within group
(fall outs,
arguments)

Med Low This could hinder
group productivity
for all members of
the team - not just
those who are
involved in the
conflict. This could
cause us to miss
deadlines or not get
tasks done.

If 2 members of the team
have an argument we will
separate their
responsibilities to keep
them mostly apart.
If members cannot stand
to be on the team
together then we can
speak to the module staff
to find a better resolution.

All
membe
rs



ID Type Description Likelihood Severity Impact Mitigation Owner

R6 Human Poor code
quality

Med Med This might put other
teams off from
carrying on our
project as the code
won’t be
maintainable -
making us miss out
on bonus marks

The reality of software
development is that we
can’t guarantee that
every piece of code will
be of the best quality. We
decided that it’s important
that we check over other
peoples commits and
bring up problems as
they happen so that we
can keep a high standard
of quality.

All
membe
rs

R7 Human Poor write-up
quality

Med High This could cause
the project to not
make sense to
markers, meaning
we get a worse
result.

Multiple members of the
team will check over
each deliverable,
including a team member
not majorly involved in
that deliverable to avoid
bias.

All
membe
rs

R8 Product Bugs in
program

Med Med This would make us
lose marks in the
implementation
section of the
project. Severe
bugs could make
the game
unplayable and not
allow us to meet the
UR_EXPERIENCE
requirement.

Create automatic tests
throughout development
and rigorously test before
any deadline

Ren



References
[1] I. Sommerville, Software engineering. Boston: Pearson/Addison-Wesley, 2004.


